Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU.

نویسندگان

  • Kevin G Hoff
  • Dennis T Ta
  • Tim L Tapley
  • Jonathan J Silberg
  • Larry E Vickery
چکیده

Hsc66 and Hsc20 comprise a specialized chaperone system important for the assembly of iron-sulfur clusters in Escherchia coli. Only a single substrate, the Fe/S template protein IscU, has been identified for the Hsc66/Hsc20 system, but the mechanism by which Hsc66 selectively binds IscU is unknown. We have investigated Hsc66 substrate specificity using phage display and a peptide array of IscU. Screening of a heptameric peptide phage display library revealed that Hsc66 prefers peptides with a centrally located Pro-Pro motif. Using a cellulose-bound peptide array of IscU we determined that Hsc66 interacts specifically with a region (residues 99-103, LPPVK) that is invariant among all IscU family members. A synthetic peptide (ELPPVKIHC) corresponding to IscU residues 98-106 behaves in a similar manner to native IscU, stimulating the ATPase activity of Hsc66 with similar affinity as IscU, preventing Hsc66 suppression of bovine rhodanese aggregation, and interacting with the peptide-binding domain of Hsc66. Unlike native IscU, however, the synthetic peptide is not bound by Hsc20 and does not synergistically stimulate Hsc66 ATPase activity with Hsc20. Our results indicate that Hsc66 and Hsc20 recognize distinct regions of IscU and further suggest that Hsc66 will not bind LPPVK motifs with high affinity in vivo unless they are in the context of native IscU and can be directed to Hsc66 by Hsc20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli.

The iscU gene in bacteria is located in a gene cluster encoding proteins implicated in iron-sulfur cluster assembly and an hsc70-type (heat shock cognate) molecular chaperone system, iscSUA-hscBA. To investigate possible interactions between these systems, we have overproduced and purified the IscU protein from Escherichia coli and have studied its interactions with the hscA and hscB gene produ...

متن کامل

The Fe/S assembly protein IscU behaves as a substrate for the molecular chaperone Hsc66 from Escherichia coli.

IscU, a NifU-like Fe/S-escort protein, binds to and stimulates the ATPase activity of Hsc66, a hsp70-type molecular chaperone. We present evidence that stimulation arises from interactions of IscU with the substrate-binding site of Hsc66. IscU inhibited the ability of Hsc66 to suppress the aggregation of the denatured model substrate proteins rhodanese and citrate synthase, and calorimetric and...

متن کامل

Preferential substrate binding orientation by the molecular chaperone HscA.

HscA, a specialized bacterial hsp70-class chaperone, interacts with the iron-sulfur cluster assembly protein IscU by recognizing a conserved LPPVK sequence motif at positions 99-103. We have used a site-directed fluorescence labeling and quenching strategy to determine whether HscA binds to IscU in a preferred orientation. HscA was selectively labeled on opposite sides of the substrate binding ...

متن کامل

Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance.

A myopathy with severe exercise intolerance and myoglobinuria has been described in patients from northern Sweden, with associated deficiencies of succinate dehydrogenase and aconitase in skeletal muscle. We identified the gene for the iron-sulfur cluster scaffold protein ISCU as a candidate within a region of shared homozygosity among patients with this disease. We found a single mutation in I...

متن کامل

Transfer of Sulfur from IscS to IscU during Iron-Sulfur Cluster Assembly

The cysteine desulfurase enzymes NifS and IscS provide sulfur for the biosynthesis of iron-sulfur proteins. NifU and IscU have been proposed to serve as template or scaffold proteins in the initial Fe/S-cluster assembly events, but the mechanism of sulfur transfer from NifS or IscS to NifU or IscU has not been elucidated. We have employed 35S-cysteine radiotracer studies to monitor sulfur trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 30  شماره 

صفحات  -

تاریخ انتشار 2002